LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - APRIL 2010

PH 1815 / 1810 / 1801 - STATISTICAL MECHANICS

Date & Time: 30/04/2010 / 1:00 - 4:00 Dept. No. Max. : 100 Marks

PART – A

(Answer **ALL** questions)

 $(10 \times 2 = 20 \text{ marks})$

- 1. What is meant by phase-space? Define the term phase trajectory.
- 2. Define an ensemble. What is a stationary ensemble?
- 3. Write down the Maxwell Boltzmann and Fermi Dirac distribution functions.
- 4. What is the total energy of a system of five non-interacting particles at temperature T, if the Hamiltonian of the system is $H = \sum_{i=1}^{5} a P_{x_i}^2 + b x_i^2$?
- 5. What is the statistical weight associated with a grand canonical ensemble of M elements for the distribution, $\{m_{n_i}\}$?
- 6. What is the mechano-caloric effect exhibited by Liquid He II?
- 7. Give the reason why phonons cannot be polarized while photons can be polarized.
- 8. Define the term 'Fermi energy'.
- 9. Why is statistical thermodynamics unsuitable for small systems at low temperatures?
- 10. Why does small particles immersed in a liquid show Brownian motion?

PART - B

(Answer any **FOUR** questions)

 $(4 \times 7.5 = 30 \text{ marks})$

- 11. Explain Gibb's paradox. How is it resolved?
- 12. Prove that entropy is an extensive property of the system.
- 13. Obtain the rotational partition function for a diatomic molecule.
- 14. Derive an expression for the magnetic susceptibility of a free electron gas.
- 15. Explain the correlation function of a randomly fluctuating quantity.

PART - C

(Answer any **FOUR** questions)

 $(4 \times 12.5 = 50 \text{ marks})$

- 16. a) State and prove Liouville's theorem.
 - b) What is the principle of conservation of extension in phase?
- 17. Obtain the expression for the entropy of a system of ideal gas when it exchanges energy with its surroundings, but not mass.
- 18. What is Bose-Einstein condensation? Show how a system of Bosons condense, when cooled below the critical temperature.
- 19. Define Chandrasekhar limit. Treating the white dwarf like an ideal Fermi gas, obtain an expression for it.
- 20. Obtain the expressions for the mean square velocity and mean square displacement of a Brownian particle employing Langevin theory. Graphically represent the variation of these quantities with time.
